Jordan Γ*-Derivation on Semiprime Γ-Ring <i>M</i> with Involution

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Jordan∗− Derivations in Semiprime Rings with Involution

In this paper we prove the following result. Let R be a 6−torsion free semiprime ∗−ring and let D : R → R be an additive mapping satisfying the relation D(xyx) = D(x)y∗x∗ + xD(y)x∗ + xyD(x), for all pairs x, y ∈ R. In this case D is a Jordan ∗−derivation. Mathematics Subject Classification: 16W10, 39B05

متن کامل

Jordan derivation on trivial extension

Let A be a unital R-algebra and M be a unital A-bimodule. It is shown that every Jordan derivation of the trivial extension of A by M, under some conditions, is the sum of a derivation and an antiderivation.

متن کامل

Generalized Derivations on Semiprime Gamma Rings with Involution

An extensive generalized concept of classical ring set forth the notion of a gamma ring theory. As an emerging field of research, the research work of classical ring theory to the gamma ring theory has been drawn interest of many algebraists and prominent mathematicians over the world to determine many basic properties of gamma ring and to enrich the world of algebra. The different researchers ...

متن کامل

*-orderings on a Ring with Involution

The object of the paper is to extend part of the theory of-orderings on a skewweld with involution to a general ring with involution. The valuation associated to a-ordering is examined. Every-ordering is shown to extend.-orderings are shown to form a space of signs as deened by Brr ocker and Marshall. In case the involution is the identity, the ring under consideration is commutative and the-or...

متن کامل

A Note on Jordan Left ∗-Centralizers in Rings with Involution

Let R be a ring with involution. An additive mapping T : R → R is called a left ∗-centralizer (resp. Jordan left ∗-centralizer) if T (xy) = T (x)y∗ (resp. T (x2) = T (x)x∗) holds for all x, y ∈ R, and a reverse left ∗-centralizer if T (xy) = T (y)x∗ holds for all x, y ∈ R. The purpose of this paper is to solve some functional equations involving Jordan left ∗-centralizers on some appropriate su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Linear Algebra & Matrix Theory

سال: 2016

ISSN: 2165-333X,2165-3348

DOI: 10.4236/alamt.2016.62006